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Abstract. As the complexity of compute nodes in high-performance
computing (HPC) keeps increasing, systems equipped with heteroge-
neous memory devices are becoming paramount. Efficiently utilizing het-
erogeneous memory-based systems, however, poses significant challenges
to application developers. System-software-level transparent solutions
utilizing artificial intelligence and machine learning approaches, in partic-
ular nonsupervised learning-based methods such as reinforcement learn-
ing, may come to the rescue. However, such methods require rapid es-
timation of execution runtime as a function of the data layout across
memory devices for exploring different data placement strategies, ren-
dering architecture-level simulators impractical for this purpose.

In this paper we propose a differential tracing-based approach using
memory access traces obtained by high-frequency sampling-based meth-
ods (e.g., Intel’s PEBS) on real hardware using of different memory de-
vices. We develop a runtime estimator based on such traces that provides
an execution time estimate orders of magnitude faster than full-system
simulators. On a number of HPC miniapplications we show that the
estimator predicts runtime with an average error of 4.4% compared to
measurements on real hardware.

Keywords: Memory management · Heterogeneous memory · Machine
learning.

1 Introduction

As dynamic random-access memory (DRAM) approaches its limits in terms
of density, power, and cost, a wide range of alternative memory technologies
are on the horizon, with some of them already in relatively large-scale deploy-
ment: 3D NAND flash [32], non-volatile memories such as 3D-XPoint [16], spin-
transfer torque magnetic RAM [45], and phase-change memory [27]. Moreover,
high-performance volatile memories, such as Hybrid Memory Cube [19], high-
bandwidth memory (HBM) [21], and Graphics Double Data Rate 6 [22], are
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actively being developed and deployed. Resource disaggregation [4], an emerg-
ing compute paradigm that has been receiving a lot of attention recently, will
further expand the heterogeneous memory landscape.

While these technologies provide opportunities for improving system utiliza-
tion and efficiency through better matching of specific hardware characteristics
with application behavior, at the same time they pose immense challenges to
software developers. Management of such heterogeneous memory types is a ma-
jor challenge for application developers, not only in placing data structures into
the most suitable memory, but also in adaptively moving content as applica-
tion characteristics change over time. Operating system and/or runtime level
solutions based on artificial intelligence (AI) and machine learning (ML) that
optimize memory allocations and data movement by transparently mapping ap-
plication behavior to the underlying hardware are therefore highly desired.

Although a large body of existing work explores various ML approaches for
heterogeneous memory management [43,12,18,44], to the best of our knowledge
none of this work applies nonsupervised learning such as reinforcement learn-
ing (RL) [41]. This gap exists despite RL’s enormous potential that has been
demonstrated in a wide range of fields recently [31]. RL evolves an agent to
refine its policy through repeatedly interacting with the environment. Hence it
requires rapid and low-overhead estimation of application execution time as a
function of memory layout over heterogeneous memory devices. Cycle-level full-
system simulators such as gem5 [8] and cycle-accurate memory simulators such
as Ramulator [25] and NVSIM [11] incur slowdowns that are prohibitive for
such a scenario. Additionally, restricting the simulation to memory devices only,
namely by feeding memory access traces (captured by tools such as PIN [28] or
DynInst [9]) into memory simulators, loses timing information about the com-
putation, in turn degrading the accuracy of the overall simulation. Furthermore,
these tools are still orders of magnitude slower than execution on real hardware.

This paper explores an alternative approach to rapid execution time estima-
tion over heterogeneous memory devices, a method we call di�erential tracing.
The basic idea is to obtain high-fidelity memory access traces running on real
hardware using different memory devices; matching the traces to identify dif-
ferences in runtime; and, based on this information, providing an estimate for
execution time as a function of the virtual memory to device mapping. To this
end, we utilize Intel’s precise event-based sampling (PEBS) [20] mechanism and
propose a number of extensions (e.g., the notion of application phasemarks) to
the tracing mechanism that enables high-accuracy matching of memory traces.
Using the matched traces, we develop an estimator that provides a runtime
estimate substantially faster than cycle-level simulators.

Specifically, in this paper we make the following contributions.

{ We address the issue of providing an execution time estimator for hybrid
memory systems without incurring unacceptable slowdowns that would oth-
erwise be prohibitive in iterative machine learning methods such as RL.
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{ We introduce a number of novel extensions to sampling-based memory access
tracing (e.g., application phasemarks) that improve our ability to match
memory traces.

{ We evaluate our proposal on four HPC miniapplications across a wide range
of memory layouts and compare the estimates with real hardware execution.

We find that the proposed method provides an average estimation error of
4:4% compared with execution on real hardware, while it runs orders of magni-
tude faster than gem5 and Ramulator.

The rest of the paper is organized as follows. We begin with further motiva-
tion in Section 2. Section 3 provides background information on memory access
tracing and lightweight kernels. Our custom PEBS driver and the estimator are
detailed in Section 4, and evaluation is provided in Section 5. Section 6 provides
additional discussion, Section 7 surveys related work, and Section 8 concludes
the paper.

2 Motivation

Before getting into the details of our proposal, we provide a high-level overview
of the approach we are pursuing. Our aim is to further clarify the motivation
for this work. Figure 1 outlines the idea of RL-based heterogeneous memory
management.

Hardware (with heterogeneous memory devices)

Application

System software

Statet

Statet+1
Rewardt+1

Actiont

Policy

Rewardt+1

Fig. 1: Reinforcement-learning-based heterogeneous memory management.

In essence, the system software runs an RL agent that periodically observes
application behavior through low-level hardware metrics such as memory ac-
cess patterns, the current utilization of memory bandwidth, and the measured
arithmetic intensity. Subsequently, it feeds this state information into a policy
network that infers an action for potentially rearranging the memory layout of
the application, that is, moving data across memory devices. In turn, the applica-
tion (optionally in cooperation with the hardware) provides feedback on progress
in the form of rewards, for example, inverse proportionally with execution time.
The agent’s goal is to maximize rewards and thus to minimize execution time.
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Ideally, one would train such agents in a real execution environment on ac-
tual hardware. However, RL requires a large number of iterations for exploring
the environment, which renders real-hardware-based training extremely resource
demanding. Therefore, a better approach is to train the agent offline with a sur-
rogate hardware model faster than the actual hardware. In the remainder of
the paper, we call this model an estimator. While existing hardware simulators
can provide accurate runtime estimation, they are impractical because of the
immense slowdown they incur (see Section 5 for a quantitative characterization
of the overhead). Instead, what we need is a simulation environment that pro-
vides swift estimation of application execution time as a function of the memory
layout.

In summary, we emphasize that the goal of this study is not to optimize
the memory layout of the particular applications considered for evaluation but,
rather, to provide a simulation environment that can be used to train machine
learning models for memory management in a general context.

3 Background

3.1 Precise Event-Based Sampling

PEBS is a feature of some Intel microarchitectures that builds on top of Intel’s
Performance Counter Monitor (PCM) facility [20]. PCM enables the monitoring
of a number of predefined processor performance counters by monitoring the
number of occurrences of the specified events1 in a set of dedicated hardware
registers.

PEBS extends the idea of PCM by transparently storing additional processor
information while monitoring a PCM event. However, only a small subset of the
PCM events actually support PEBS. A “PEBS record” is stored by the CPU
in a user-defined buffer when a configurable number of PCM events, named the
“PEBS reset”, occur. The actual PEBS record format depends on the microar-
chitecture, but it generally includes the set of general-purpose registers as well
as the virtual address for load/store operations.

A PEBS assist in Intel nomenclature is the action of storing the PEBS record
into the CPU buffer. When the number of records written by the PEBS assist
events reaches a configurable threshold inside the PEBS buffer, an interrupt is
triggered. The interrupt handler is expected to process the PEBS data and clear
the buffer, allowing the CPU to continue storing more records. The smaller the
threshold, the more frequent the interrupt requests (IRQs). We note that the
PEBS assist does not store any timing information. Timestamping the PEBS
data, however, can potentially occur in the IRQ handler.

3.2 Lightweight Kernel-Based Development Environment

Lightweight multikernels have emerged as an alternative operating system ar-
chitecture for HPC, where the basic idea is to run Linux and a lightweight

1 The exact availability of events depends on the processor’s microarchitecture.
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Fig. 2: Overview of the IHK/McKernel architecture.

kernel (LWK) side-by-side in compute nodes to attain the scalability properties
of LWKs and full compatibility with Linux at the same time. IHK/McKernel is
a multikernel OS whose architecture is depicted in Figure 2. A low-level software
infrastructure, called Interface for Heterogeneous Kernels (IHK) [40], provides
capabilities for partitioning resources in a many-core environment (e.g., CPU
cores and physical memory), and it enables management of lightweight ker-
nels. IHK can allocate and release host resources dynamically. No reboot of the
host machine is required when altering its con�guration, thus enabling relatively
straightforward deployment of the multikernel stack on a wide range of Linux
distributions.

McKernel is a lightweight co-kernel developed on top of IHK [15]. It is de-
signed explicitly for HPC workloads, but it retains a Linux-compatible appli-
cation binary interface so that it can execute unmodi�ed Linux binaries. Mc-
Kernel implements only a small set of performance-sensitive system calls; the
rest of the OS services are delegated to Linux. Speci�cally, McKernel provides
its own memory management, it supports processes and multithreading, it has
a simple round-robin cooperative (tickless) scheduler, and it implements stan-
dard POSIX signaling. It also implements interprocess memory mappings, and
it o�ers interfaces for accessing hardware performance counters.

McKernel has a number of favorable properties with respect to this study.
First, it is highly deterministic. Not only does it provide predictable performance
across multiple executions of the same program, but it also ensures that the
same virtual memory ranges are assigned to a process when executed multiple
times, assuming that the application itself is deterministic. As we will see, this
signi�cantly simpli�es comparing memory access traces obtained from multiple
executions.

Second, McKernel's relatively simple source code provides fertile ground for
developing custom kernel-level solutions. For example, it provides a custom
PEBS driver [29] that we extend with an API to capture higher-level appli-
cation information (e.g., the application phasemarks discussed in Section 4.1),
as well as another custom interface that enables selectively binding parts of
the application address space to speci�c memory devices without changing the
application code (detailed in Section 4.2).
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4 Design and Implementation

This section discusses the design of our proposed execution time estimator along
with its most relevant implementation details.

Application

(a)

Application Pro�le

Data Mapping

Estimator Execution Time

PEBS+McKernel(b) Phasemark

gem5 / gem5+Ramulator

Intel pin / gem5 Ramulator / Siena

Fig. 3: High-level representation of the steps needed to build the proposed esti-
mator (a) and the tools that assist with the implementation (b).

Figure 3 (a) gives an overview of the steps to build the proposed estimator.
The system comprises two main pieces: the application pro�ler and the estimator.
First, we collect memory access traces of the target application (Application
Pro�le in the �gure). Since we want to train an agent o�ine, trace collection
may be slow for the purpose of training. However, the pro�ling step must have a
low overhead once the agent is deployed (i.e., during inference), and the estimator
has to be fast for training. Thus, it is desired that both pieces be fast, incur low
overhead, and attain high accuracy.

In our implementation of this system (PEBS+McKernel in Figure 3 (b)), we
collect high-frequency memory access traces from a real, heterogeneous memory-
equipped hardware environment where we place application content into di�er-
ent memory devices. Therefore, the application pro�le is composed of sampled
memory access traces annotated with timing information, once for each mem-
ory device of the target computing system. Using sampling hardware counters
is e�ectively the lowest-overhead, application-oblivious way to collect an appli-
cation's memory access trace.

The estimator, which we will describe in more detail below, matches the
traces and identi�es execution phases (Phasemark in the �gure) along with the
accessed memory regions that impact performance. Taking into account the dis-
crepancy between traces from di�erent memory devices, it estimates execution
time based on input that describes the layout of application data with respect
to the underlying memory devices, the mapping between virtual memory ranges
to the corresponding memory devices that back those mappings (Data Mapping
in Figure 3 (a)).
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Di�erent approaches exist for implementing such a system, as outlined in
Figure 3 (b). It can be implemented with a di�erent pro�ling method and/or a
di�erent estimator ( Intel pin /gem5 and Ramulator / Siena in the �gure, respec-
tively) or even combining the pro�ling and estimation steps into a single step
(gem5 / gem5+Ramulator). We found that existing approaches are impractical
in the context of reinforcement learning because RL requires both low-overhead
pro�ling for the inference step and a fast estimator for the training step. We
evaluate some of these approaches in Section 5.

We �rst describe the details of our memory access tracing mechanism.

4.1 Memory Access Tracing and Application Phasemarks

To track application-level memory accesses, we utilize Intel's PEBS facility.
Speci�cally, we con�gure PEBS on the event of last-level cache misses for which
the PEBS records include not only the set of general-purpose registers but also
the virtual address for the particular load/store operation that triggered the
cache miss, e�ectively capturing the memory access pattern of the application.

It has been reported previously that standard PEBS drivers incur nontrivial
overhead and have limited con�guration 
exibility [26], [1], [30]. For exam-
ple, in both the Linux kernel's PEBS driver and the one provided by Intel's
vTune software, no interface is available for controlling the internal PEBS assist
bu�er size, which implicitly controls the frequency of PEBS interrupts that en-
able the annotation of PEBS records with high-granularity timestamps. Olson
et al. also reported that decreasing the PEBS reset value below 128 on Linux
caused the system to crash [30]. For these reasons we utilize McKernel's custom
PEBS driver, which has been shown to have negligible runtime overhead even at
very high-granularity tracing, for example, by capturing memory accesses with
a PEBS reset counter as low as 16 [29].

In addition to high-frequency tracing, we extend the kernel device driver to
annotate PEBS records with two extra pieces of information. First, we introduce
the notion of application phases, for which we add a dedicatedphasemark()
system call in McKernel. The call simply increments a counter in the PEBS
driver, which is in turn appended to each PEBS record. Second, we automatically
record the number of retired instructions elapsed since the beginning of the last
application phase, which again is attached to the PEBS record. As we will see
below, this extra information enables us to match memory access traces from
di�erent memory devices with very high accuracy. We note that phasemark calls
can be inserted into the application source code either manually or through
compiler-level code transformation.

Figure 4 highlights the impact of phasemarks in two memory access traces
captured from DDR4 and high-bandwidth memory, respectively, when running
the Lulesh miniapplication [23]. For more information on the hardware platform
used for this experiment as well as on the speci�cs of how we execute the appli-
cation, see Section 5. The x-axis of the �gures indicates elapsed time, while the
y-axis shows virtual page indices (i.e., virtual addresses divided by the page size).
The width of the two plots is proportional to the execution time, while the red
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vertical lines pinpoint application phasemarks captured by the PEBS driver. The
two plots show the same four phases of the application, with the only di�erence
being that the application was running on di�erent memory devices.

(a) DDR4 (b) MCDRAM

Fig. 4: Lulesh memory traces from DDR4 vs. MCDRAM, annotated with appli-
cation phasemarks.

As shown, the virtual memory ranges of the two executions are almost iden-
tical. This is due to the deterministic behavior of McKernel's memory man-
agement subsystem. In addition, phasemarks help determine how much a given
application phase is impacted by the fact that memory content is placed into
a particular memory device. This information is especially important because
not all phases experience the same e�ect. For example, the execution time of
the fourth phase in the �gure is reduced by 44% when using MCDRAM; the
�rst phase, however, becomes almost 4x faster. Had we not marked the di�erent
phases, trace matching would become signi�cantly more complex, since it would
need to identify parts of the trace where the application proceeds at a di�er-
ent pace from that of others when executed out of a di�erent memory device.
In contrast, with the presence of phasemarks, we have stable anchors for peri-
odic synchronization while processing the traces. In Section 5 we quantitatively
characterize the impact of phasemarks on runtime estimation accuracy.
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4.2 Execution Time Estimation and Veri�cation

Estimation. The mechanism of the execution time estimator is remarkably
simple. The algorithm processes memory traces of a given application obtained
from di�erent memory devices by iterating through the individual phases supple-
mented by the phasemark annotation. In a given phase, the memory access traces
are further divided into windows based on the number of retired instructions as-
sociated with the memory access samples. Much to our surprise, we observe some
discrepancy between the number of retired instructions (associated with partic-
ular phases) captured by the PEBS driver based simply on which underlying
memory device is utilized. We are unsure whether this is due to some timing
e�ect caused by the di�erence between the memory devices or an issue with
performance counter implementation in the CPU. Either way, to guarantee that
a given phase is processed at the same pace from both traces, we con�gure the
window lengths proportionally. The window length is a parameter of the estima-
tor, and we typically con�gure it to cover a few hundred thousand instructions
according to the baseline trace.

In a given window, the estimator iterates the traces and records the number
of accesses that hit each particular memory device according to the mapping
between the virtual memory ranges and the backing devices. Based on the ratio
of the number of accesses, we calculate the execution time of the given window by
skewing it proportionally between the measured times over di�erent devices, e.g.,
for a DRAM plus HBM system we use the following formula: test = tDRAM �
(tDRAM � tHBM ) � # accesses HBM

# accesses all
.

As one may notice, this mechanism completely disregards data dependencies
among memory accesses and greatly simpli�es the interpretation of memory
access traces. Nevertheless, as we will see in Section 5, this simple approach (in
combination with phasemarks) proves to be surprisingly accurate. We also note
that utmost accuracy is not required for the ML training process to be successful;
rather, it is su�cient if it is expressive enough to guide the learning algorithm
to the right optimization path.

Veri�cation. To verify the accuracy of the estimator, we extend McKernel's
memory management code with two custom APIs. One allows the speci�cation of
a list of virtual memory ranges along with their target memory device; the other
makes it possible to indicate a percentage that is interpreted as the fraction
of application pages that are to be mapped to a given memory device. The
kernel automatically places the memory of the calling process on the target
device irrespective of whether it covers the stack, heap, data/BSS sections, or
anonymous memory mappings in the process's address space.

As opposed to standard POSIX calls such asset mempolicy() or mbind()
that need to be invoked at the application level, this memory placement mecha-
nism is carried out in an application-transparent fashion. This approach greatly
simpli�es experimentation because we do not need to make modi�cations to in-
dividual applications. Using the APIs, we can easily verify the accuracy of the
proposed estimator against measurements on real hardware.
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5 Evaluation

All of our experiments were performed on an Intel® Xeon Phi— 7250 Knights
Landing (KNL) processor, which consists of 68 CPU cores, accommodating 4
hardware threads per core. The processor provides 16 GB of integrated, high-
bandwidth MCDRAM, and it is accompanied by 96 GB of DDR4 RAM. We
con�gured the KNL processor in Quadrant 
at mode; in other words, MCDRAM
and DDR4 RAM are addressable at di�erent physical memory locations. We used
64 CPU cores for applications and reserved the rest for OS activities. While we
acknowledge that the KNL platform has come of age, we emphasize that our
proposal is orthogonal to the underlying hardware. We use KNL because it is
currently the only generally available CPU architecture supporting both high-
bandwidth memory and regular DDR4. Note that Intel has already announced
its upcoming Sapphire Rapids CPU model that will provide a similar hybrid
memory environment [3]. For the wall-clock measurements of the estimator, we
use an Intel® Xeon— Platinum 8280 (Cascade Lake) CPU equipped platform.

5.1 Application Benchmarks

To evaluate the proposed estimator, we chose the following miniapplications
primarily because they are the subject of a substantial runtime di�erence when
executed out of high-bandwidth memory.

{ MiniFE is a proxy application for unstructured implicit �nite element codes.
It is similar to HPCCG and pHPCCG but provides a much more complete
vertical covering of the steps in this class of applications [17].

{ Lulesh is the Livermore Unstructured Lagrangian Explicit Shock Hydro-
dynamics benchmark, which is part of the Shock Hydrodynamics Challenge
Problem. It was originally de�ned and implemented by Lawrence Livermore
National Laboratory, and it is a widely studied proxy application in U.D.
Department of Energy co-design e�orts [23].

{ LAMMPS is an acronym for Large-scale Atomic/Molecular Massively Par-
allel Simulator. LAMPPS is a classical molecular dynamics code [36].

{ Nekbone solves a standard Poisson equation using a conjugate gradient
iteration with a simple preconditioner on a block or linear geometry. Nekbone
exposes the principal computational kernel that is pertinent to Nek5000 [5].

All our measurements are performed in 
at MPI con�guration, that is, run-
ning 64 MPI ranks on a single node with a dedicated CPU core for each process.
This setup enables us to achieve two important goals. First, we make sure that
we exercise the entire chip and measure a practical application deployment. Sec-
ond, the single-threaded execution of each rank ensures deterministic behavior
with respect to memory mappings, which in turn enables us to easily measure
con�gurations where only speci�c ranges of the address space are mapped to
high-bandwidth memory. We also note that we observe negligible performance
variation across multiple executions on McKernel, and thus we omit error bars
on measured data points. As for PEBS, we con�gure the reset value to 16.
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5.2 Results

We provide two sets of experiments with respect to estimation accuracy. In the
�rst setup we gradually increase the fraction of the application address space
that is mapped to high-bandwidth memory from 0% (i.e., running entirely out of
DDR4) all the way up to 100%, where all memory is allocated out of MCDRAM.
We increase the ratio in steps of 10%. Figure 5 summarizes the results.

(a) MiniFE (b) Lulesh

(c) Nekbone (d) LAMMPS

Fig. 5: Runtime estimations vs. measurements as a function of data fraction
placed in high-bandwidth memory.

On each plot the x-axis indicates the fraction of application memory that
is mapped to HBM. The left y-axis shows execution time, where the blue, or-
ange and green bars indicate runtimes as measured, estimated w/o phasemarks,
and estimated with phasemarks, respectively. We do not estimate values for
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